1. Majeed BA, Brown SJ. Developing a well-being monitoring system—Modeling and data analysis techniques. Appl Soft Comput. 2006;6(4):384-93. [DOI via Crossref] | | 2. Tinetti ME. Preventing falls in elderly persons. N Engl J Med. 2003;348(1):42-9. [DOI via Crossref] [Pubmed] | | 3. Doughty K, Lewis R, McIntosh A. The design of a practical and reliable fall detector for community and institutional telecare. J Telemed Telecare. 2000;6(Suppl 1):S150-4. [DOI via Crossref] [Pubmed] | | 4. Bourke A, van de Ven P, Gamble M, O’Connor R, Murphy K, Bogan E, et al. Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities. J Biomech. 2010;43(15):3051-7. [DOI via Crossref] [Pubmed] | | 5. Hahn ME, Chou LS. Age-related reduction in sagittal plane center of mass motion during obstacle crossing. J Biomech. 2004;37(6):837-44. [DOI via Crossref] [Pubmed] | | 6. Sixsmith A, Johnson N. A smart sensor to detect the falls of the elderly. IEEE Pervasive Comput. 2004;3(2):42-7. [DOI via Crossref] | | 7. Alwan M, Rajendran PJ, Kell S, Mack D, Dalal S, Wolfe M, et al. A smart and passive floor-vibration based fall detector for elderly. Presented at 2nd Information and Communication Technologies, 2006 ICTTA. New York: IEEE, 2006. | | 8. Popescu M, Li Y, Skubic M, Rantz M. An acoustic fall detector system that uses sound height information to reduce the false alarm rate. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:4628-31. [DOI via Crossref] | | 9. Liu L, Popescu M, Ho K, Skubic M, Rantz M. Doppler radar sensor positioning in a fall detection system. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:256-9. | | 10. Ariani A, Redmond SJ, Chang D, Lovell NH. Simulated unobtrusive falls detection with multiple persons. IEEE Trans Biomed Eng. 2012;59(11):3185-96. [DOI via Crossref] [Pubmed] | | 11. Bourke A, O’Brien J, Lyons G. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture. 2007;26(2):194-9. [DOI via Crossref] [Pubmed] | | 12. Tong L, Song Q, Ge Y, Liu M. HMM-based human fall detection and prediction method using tri-axial accelerometer. IEEE Sensors J. 2013;13(5):1849-56. [DOI via Crossref] | | 13. Li Q, Stankovic JA, Hanson MA, Barth AT, Lach J, Zhou G. Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. (BSN), 2009. Presented at the Sixth International Workshop on Wearable and Implantable Body Sensor Networks; June 3-5, 2009; Berkeley, CA., New York: IEEE, 2009. | | 14. Nguyen T-T, Cho M-C, Lee T-S. Automatic fall detection using wearable biomedical signal measurement terminal. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5203-6. | | 15. Zheng J, Zhang G, Wu T. Design of automatic fall detector for elderly based on triaxial accelerometer. Presented at the 3rd International Conference on Bioinformatics and Biomedical Engineering; June 11-13, 2009; Beijing. New York: IEEE, 2009. [DOI via Crossref] | | 16. Dinh A, Teng D, Chen L, Shi Y, McCrosky C, Basran J, et al. editors. Implementation of a physical activity monitoring system for the elderly people with built-in vital sign and fall detection. Presented at the 6th International Conference on Information Technology: New Generations; April 27-29, 2009; Las Vegas, NV. New York: IEEE, 2009. [DOI via Crossref] | | 17. Huang C-N, Chiang C-Y, Chang J-S, Chou Y-C, Hong Y-X, Hsu SJ, et al. Location-aware fall detection system for medical care quality improvement. Presented at the third International Conference on Multimedia and Ubiquitous Engineering; June 4-6, 2009; Qingdao. New York: IEEE, 2009. [DOI via Crossref] | | 18. Wang C-C, Chiang C-Y, Lin P-Y, Chou Y-C, Kuo I-T, Huang C-N, et al. Development of a fall detecting system for the elderly residents. Presented at the 2nd International Conference on Bioinformatics and Biomedical Engineering; May 16-18, 2008; Shanghai. New York: IEEE, 2008. [DOI via Crossref] | | 19. Cucchiara R, Prati A, Vezzani R. An intelligent surveillance system for dangerous situation detection in home environments. Intelligenza Artificiale. 2004;1(1):11-5. | | 20. Miaou S-G, Sung P-H, Huang C-Y. A customized human fall detection system using omni-camera images and personal information. Presented at 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, 2006 D2H2; April 2-4, 2006; Arlington, VA. , New York: IEEE, 2006. [DOI via Crossref] | | 21. Thome N, Miguet S, Ambellouis S. A real-time, multiview fall detection system: A LHMM-based approach. IEEE Trans Circ Syst Video Tech. 2008;18(11):1522-32. [DOI via Crossref] | | 22. Nasution AH, Emmanuel S, (Eds.). Intelligent video surveillance for monitoring elderly in home environments. Presented at IEEE 9th Workshop on Multimedia Signal Processing; October 1-3, 2007; Crete. New York: IEEE, 2007. [DOI via Crossref] | | 23. Huang B, Tian G, Li X. A method for fast fall detection. Presented at 7th World Congress on Intelligent Control and Automation; June 25-27, 2008; Chongquing. New York: IEEE, 2008. | | 24. Foroughi H, Rezvanian A, Paziraee A, (Eds.). Robust fall detection using human shape and multi-class support vector machine. Presente d at Sixth Indian Conference on Computer Vision, Graphics and Image Processing; December 16-19, 2008; Bhubaneswar. New York: IEEE, 2008. [DOI via Crossref] | |
|
|