1. International Diabetes Federation. IDF Diabetes Atlas, 6th edn. Brussels, Belgium: International Diabetes Federation, 2013. |
|
2. Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev. 2011;40:387-426. [DOI via Crossref] [Pubmed] |
|
3. Vasavada N, Agarwal R. Role of oxidative stress in diabetic nephropathy. Adv Chronic Kidney Dis. 2005;12:146-54. [DOI via Crossref] [Pubmed] |
|
4. Kang ES, Lee GT, Kim BS, Kim CH, Seo GH, Han SJ, et al. Lithospermic acid B ameliorates the development of diabetic nephropathy in OLETF rats. Eur J Pharmacol. 2008;579:418-25. [DOI via Crossref] [Pubmed] |
|
5. Groop PH, Thomas MC, Moran JL, Wadèn J, Thorn LM, Mäkinen VP, et al. Finn Diane Study Group. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009;7:1651-8. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
6. Mshelia DS. Role of free radicals in pathogenesis of diabetic nephropathy: Ann Afr Med. 2004;3:55-62. |
|
7. Sayed AA, Khalifa M, Abd el-Latif FF. Fenugreek attenuation of diabetic nephropathy in alloxan-diabetic rats: attenuation of diabetic nephropathy in rats. J Physiol Biochem. 2012;68:263-9. [DOI via Crossref] [Pubmed] |
|
8. Tavafi M. Diabetic nephropathy and antioxidants: J Nephropathol. 2013;2:20-7. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
9. Ha H, Hwang IA, Park JH, Lee HB. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract. 2008;82:s42-5. [DOI via Crossref] [Pubmed] |
|
10. Choi SW, Benzie IF, Ma SW, Strain JJ, Hannigan BM. Acute hyperglycemia and oxidative stress: direct cause and effect? Free Radic Biol Med. 2008;44:1217-31. [DOI via Crossref] [Pubmed] |
|
11. Jacobson HR. Chronic renal failure: pathophysiology. Lancet. 1991;338:419-23. [DOI via Crossref] |
|
12. Rodrigo R, Bosco C. Oxidative stress and protective effects of polyphenols: comparative studies in human and rodent kidney. A review. Comp Biochem Physiol C Toxicol Pharmacol. 2006;142:317-27. [DOI via Crossref] [Pubmed] |
|
13. Stephens JW, Khanolkar MP, Bain SC. The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease. Atherosclerosis. 2009;202:321-9. [DOI via Crossref] [Pubmed] |
|
14. Onozato ML, Tojo A, Goto A, Fujita T, Wilcox CS. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Kidney Int. 2002;61:186-94. [DOI via Crossref] [Pubmed] |
|
15. Beisswenger PJ, Howell SK, Russell GB, Miller ME, Rich SS, Mauer M. Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products. Diabetes Care. 2013;36:3234-9. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
16. Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, et al. Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol. 2001;281:F948-F957. [DOI via Crossref] [Pubmed] |
|
17. Ishii N, Ikenaga H, Carmines PK, Takada N, Okazaki T, Nagai T, et al. Impact of angiotensin-converting enzyme inhibition on renal cortical nitrotyrosine content during increased extracellular glucose concentration. Clin Biochem. 2006;39:633-9. [DOI via Crossref] [Pubmed] |
|
18. Valdivielso JM. The physiology of vitamin D receptor activation. Contrib Nephrol. 2009;163:206-12. [DOI via Crossref] [Pubmed] |
|
19. Schwarz U, Amann K, Orth SR, Simonaviciene A, Wessels S, Ritz E. Effect of 1,25(OH)2 vitamin D-3 on glomerulosclerosis in subtotally nephrectomized rats. Kidney Int. 1998;53:1696-705. [DOI via Crossref] [Pubmed] |
|
20. Zhang Z, Zhang Y, Ning G, Deb DK, Kong J, Li YC. Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy: blockade of compensatory renin increase. Proc Natl Acad Sci USA. 2008;105:15896-901. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
21. Agarwal R, Acharya M, Tian J, Hippensteel RL, Melnick JZ, Qiu P, et al. Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int. 2005;68:2823-8. [DOI via Crossref] [Pubmed] |
|
22. Mizobuchi M, Morrissey J, Finch JL, Martin DR, Liapis H, Akizawa T, et al. Combination therapy with an angiotensin-converting enzyme inhibitor and a vitamin D analog suppresses the progression of renal insufficiency in uremic rats. J Am Soc Nephrol. 2007;18: 1796-1806. [DOI via Crossref] [Pubmed] |
|
23. Husain K, Suarez E, Isidro A, Ferder L. Effects of paricalcitol and enalapril on atherosclerotic injury in mouse aortas: Am J Nephrol. 2010;32:296-304. [DOI via Crossref] [Pubmed] |
|
24. Finch JL, Suarez EB, Husain K, Ferder L, Cardema MC, Glenn DJ, et al. Effect of combining an ACE inhibitor and a VDR activator on glomerulosclerosis, proteinuria, and renal oxidative stress in uremic rats. Am J Physiol Renal Physiol. 2012;302:F141-9. [DOI via Crossref] [Pubmed] |
|
25. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 1976;72:248-54. 26. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. [DOI via Crossref] |
|
27. Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium deficient rat liver. Biochem Biophys Res Commun. 1976;71:952-8. [DOI via Crossref] |
|
28. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34:497-500. [Pubmed] |
|
29. Draper H, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421-31. [DOI via Crossref] |
|
30. Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems. Anal Biochem. 1966;16:359. [DOI via Crossref] |
|
31. Hortelano S, Dewez B, Genaro AM, az-Guerra MJ, Bosca L. Nitric oxide is released in regenerating liver after partial hepatectomy. Hepatology. 1995;21:776-86. [Pubmed] |
|
32. Mizobuchi M, Morrissey J, Finch JL, Martin DR, Liapis H, Akizawa T, et al. Combination therapy with an angiotensin-converting enzyme inhibitor and a vitamin D analog suppresses the progression of renal insufficiency in uremic rats. J Am Soc Nephrol. 2007;18:1796-1806. [DOI via Crossref] [Pubmed] |
|
33. Yuan W, Pan W, Kong J, Zheng W, Szeto FL, Wong KE, et al. 1,25-Dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J Biol Chem. 2007;282:29821-30. [DOI via Crossref] [Pubmed] |
|
34. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329:1456-62. [DOI via Crossref] [Pubmed] |
|
35. Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, et al. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension. 1998;32:488-95. [DOI via Crossref] [Pubmed] |
|
36. Baynes JW, Thorpe SR. The role of oxidative stress in diabetic complications. Curr Opin Endocrinol. 1996;3:277-84. [DOI via Crossref] |
|
37. Turk HM, Sevinc A, Camci C, Cigli A, Buyukberber S, Savli H, et al. Plasma lipid peroxidation products and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Acta Diabetologica. 2002;39:117-22. [DOI via Crossref] [Pubmed] |
|
38. Kim H, Kang K, Yamabe N, Yokozawa T. Comparison of the effects of Korean ginseng and heat-processed Korean ginseng on diabetic oxidative stress. Am J Chin Med. 2008;36:989-1004. [DOI via Crossref] [Pubmed] |
|
39. Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J. Antioxidant defense system in diabetic kidney: a time course study. Life Sci. 1997;60:667-79. [DOI via Crossref] |
|
40. De Souza Santos R, Vianna LM. Effects of cholecalciferol supplementation on blood glucose in an experimental model of type 2 diabetes mellitus in spontaneously hypertensive rats and Wistar rats. Clin Chim Acta. 2005;358:146-50. [DOI via Crossref] [Pubmed] |
|
41. Baynes KC, Boucher BJ, Feskens EJ, Kromhout D. Vitamin D, glucose tolerance and insulinaemia in elderly men. Diabetologia. 1997; 40:344-7. [DOI via Crossref] [Pubmed] |
|
42. Maestro B, Campion J, Davila N, Calle C. Stimulation by 1, 25-dihydroxyvitamin D3 of insulin receptor expression and insulin responsiveness for glucose transport in U-937 human promonocytic cells. Endocr J. 2000;47:383-91. [DOI via Crossref] [Pubmed] |
|
43. Borissova AM, Tankova T, Kirilov G, Dakovska L, Kovacheva R. The effect of vitamin D3 on insulin secretion and peripheral insulin sensitivity in type 2 diabetic patients. Int J Clin Pract. 2003;57:258-61. [Pubmed] |
|
44. Chiu KC, Chuang LM, Lee NP, Ryu JM, McGullam JL, Tsai GP, et al. Insulin sensitivity is inversely correlated with plasma intact parathyroid hormone level. Metabolism. 2000;49:1501-05. [DOI via Crossref] [Pubmed] |
|
45. GaweÃ
 S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. WiadLek. 2004;57:453-5. |
|
46. Michel T, Feron O. Nitric oxide syntheses: which, where, how, and why? J Clin Invest. 1997;100:2146-52. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
47. Vaziri ND, Ni Z, Oveisi F, Trnavsky-Hobbs DL. Effect of antioxidant therapy on blood pressure and NO synthase expression in hypertensive rats. Hypertension. 2000;36:957-64. [DOI via Crossref] [Pubmed] |
|
48. Somani SM, Husain K, Schlorff E. Response of antioxidant system to physical and chemical stress. In: Baskin SI, Salem H (Eds.), Oxidants, Antioxidants and Free Radicals. Washington, DC: Taylor and Francis, 1997, pp. 125-141. |
|
49. Marcondes S, Cardoso MH, Morganti RP, Thomazzi SM, Lilla S, Murad F. Cyclic GMP-independent mechanisms contribute to the inhibition of platelet adhesion by nitric oxide donor: a role for {alpha}-actinin nitration. Proc Natl Acad Sci. 2006;103: 3434-9. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
50. Marklund SL. Regulation of cytokines of extracellular superoxide dismutase and other superoxide dismutase isozymes in fibroblasts. J Biol Chem. 1992;267:6696-701. [Pubmed] |
|
51. Godin DV, Wohaieh SA, Garnett ME, Goumeniouk AD. Antioxidant enzyme alterations in experimental and clinical diabetes. Mol Cell Biochem. 1988;84:223-31. [DOI via Crossref] [Pubmed] |
|
52. Limaye PV, Raghuram N, Sivakami S. Oxidative stress and gene expression of antioxidant enzymes in the renal cortex of streptozotocin induced diabetic rats. Mol Cell Biochem. 2003;243: 147-52. [DOI via Crossref] [Pubmed] |
|
53. Ishii N, Patel KP, Lane PH, Taylor T, Bian K, Murad F, et al. Nitric oxide synthesis and oxidative stress in the renal cortex of rats with diabetes mellitus. J Am Soc Nephrol. 2001;12:1630-9. [Pubmed] |
|
54. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51-88. [DOI via Crossref] [Pubmed] |
|
55. Thuraisingham RC, Nott CA, Dodd SM, Yaqoob MM. Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy. Kidney Int. 2000;57:1968-72. [DOI via Crossref] [Pubmed] |
|
56. Pacher P, Obrosova I, Mabley J, Szabó C. Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications: emerging new therapeutical strategies. Curr Med Chem. 2005;12:267-75. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
57. Beckman JS, Koppenol WH. Nitric oxide, superoxide and peroxynitrite, the good, the bad and the ugly. Am J Physiol. 1996;271: C1424-C1437. [Pubmed] |
|
58. DeRubertis FR, Craven PA, Melhem MF, Salah EM. Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide-nitric oxide interaction. Diabetes. 2004;53:762-68. [DOI via Crossref] [Pubmed] |
|
59. Emam MA. Comparative evaluation of antidiabetic activity of Rosmarinus officinalis L. and Chamomile recutita in streptozotocin induced diabetic rats. Agric Biol J N Am. 2012;3:247-52 [DOI via Crossref] |
|