E-ISSN 2231-3206 | ISSN 2320-4672
 

Original Research 


Assessment of functional status of outer hair cells in Type 2 diabetes by using distortion product otoacoustic emissions

Rajesh Paluru, Yoganandareddy Indla, Ramaswamy Chellam, Rajani Santhakumari.

Cited by (1)

Abstract
Background: Outer hair cells in the organ of Corti are not directly involved in deciding the threshold of the acoustic stimulus, but their damage will increase the hearing threshold and may even cause the neuronal deafness. Type 2 diabetes is increasing globally at an alarming rate; one of many complications of Type 2 diabetes is loss of hearing. In Type 2 diabetes, poor glycemic status is the cause for neuropathy or microangiopathy which may affect the normal hearing.

Aims and Objectives: To observe the effect of Type 2 diabetes on the functional status of outer hair cells. To illustrate the effect of Type 2 diabetes on outer hair cells for right and left ear is same or different.

Materials and Methods: A total of 50 Type 2 diabetic subjects, aged between 30 to 55 years, both sexes were included as test group after assessing their glycemic index. 50 age and sex matched healthy individuals are also included as control group. Functioning of outer hair cells was assessed with distortion product otoacoustic emissions (DPOAEs).

Results: Glycosylated hemoglobin percentage among test (8.58 ± 0.83) and control group subjects (5.28 ± 0.50) is statistically significant (<0.0001). Odds of failing the DPOAEs are 7 and 15 times higher in patients with Type 2 diabetes than those without diabetes for right and left ear, respectively.

Conclusion: There is increased risk of damage to the outer hair cells in Type 2 diabetes. The risk of damage to the outer
hair cells is more in the left ear than the right ear.

Key words: Outer Hair Cells; Distortion Product Otoacoustic Emissions; Type 2 Diabetes; Glycosylated Hemoglobin


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Rajesh Paluru
Articles by Yoganandareddy Indla
Articles by Ramaswamy Chellam
Articles by Rajani Santhakumari
on Google
on Google Scholar


REFERENCES
1. Kemp DT. Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am. 1978;64(5):1386-91. https://doi.org/10.1121/1.382104 [Pubmed]   
2. Lonsbury-Martin BL, McCoy MJ, Whitehead ML, Martin GK. Clinical testing of distortion-product otoacoustic emissions. Ear Hear. 1993;14(1):11-22. https://doi.org/10.1097/00003446-199302000-00003 [Pubmed]   
3. Berlin C. Hair Cell Micro-mechanics and Otoacoustic Emissions. Clifton Park, NY: Delmar Learning, Thomason Learning; 2002. P. 1-55.
4. Kemp DT. Otoacoustic emissions, their origin in cochlear function, and use. Br Med Bull. 2002;63:223-41. https://doi.org/10.1093/bmb/63.1.223 [Pubmed]   
5. Rance G. Auditory neuropathy/dys-synchrony and its perceptual consequences. Trends Amplif. 2005;9(1):1-43. https://doi.org/10.1177/108471380500900102 [Pubmed]    [PMC Free Fulltext]   
6. Frisina ST, Mapes F, Kim SH, Frisina DR, Frisina RD, et al. Characterization of hearing loss in aged type II diabetics. Hear Res. 2006;211(1-2):103-13.
7. Cummings CW, Haughey BH, Thomas JR, Harker LA, Flint PW. Cummings Otolaryngology: Head and Neck Surgery. 4th ed. Philadelphia, PA: Mosby; 2004.
8. Nadol JB, Randolph GW. Clinical Handbook of Ear Nose and Throat Disorders. 5th ed. New York, NY: Informa Healthcare; 2004.
9. Lonsbury-Martin BL, Martin GK. Otoacoustic emissions. In: Burkard RF, Don M, Eggermont JJ, editors. Auditory Evoked Potentials: Basic Principles and Clinical Application. Baltimore: Lippincott Williams & Wilkins; 2007. p. 159-79.
10. Di Leo MA, Di Nardo W, Cercone S, Ciervo A, Lo Monaco M, Greco AV, et al. Cochlear dysfunction in IDDM patients with subclinical peripheral neuropathy. Diabetes Care. 1997;20(5):824-8. https://doi.org/10.2337/diacare.20.5.824 [Pubmed]   
11. Erdem T, Ozturan O, Miman MC, Ozturk C, Karatas E. Exploration of the early auditory effects of hyperlipoproteinemia and diabetes mellitus using otoacoustic emissions. Eur Arch Otorhinolaryngol. 2003;260(2):62-6.
12. Hsueh W, Abel ED, Breslow JL, Maeda N, Davis RC, Fisher EA, et al. Recipes for creating animal models of diabetic cardiovascular disease. Circ Res. 2007;100(10):1415-27. https://doi.org/10.1161/01.RES.0000266449.37396.1f [Pubmed]   
13. Wang H, Zhong N. A study on DPOAE in patients with diabetes mellitus. Lin Chuang Er Bi Yan Hou Ke Za Zhi. 1998;12(11):483-6.
14. Sasso FC, Salvatore T, Tranchino G, Cozzolino D, Caruso AA, Persico M, et al. Cochlear dysfunction in type 2 diabetes: A complication independent of neuropathy and acute hyperglycemia. Metabolism. 1999;48(11):1346-50. https://doi.org/10.1016/S0026-0495(99)90141-5
15. Park MS, Park SW, Choi JH. Distortion product otoacoustic emissions in diabetics with normal hearing. Scand Audiol Suppl. 2001;30(52):148-51. https://doi.org/10.1080/010503901300007362
16. Lisowska G, Namyslowski G, Morawski K, Strojek K. Cochlear dysfunction and diabetic microangiopathy. Scand Audiol Suppl. 2001;30(52):199-203. https://doi.org/10.1080/010503901300007524
17. Aladag I, Kurt S, Eyibilen A, Guven M, Erkorkmaz U. Early evaluation of auditory dysfunction in patients with type 2 diabetes mellitus. Kulak Burun Bogaz Ihtis Derg. 2008;18(4):203-10.
18. Ren J, Zhao P, Chen L, Xu A, Brown SN, Xiao X. Hearing loss in middle-aged subjects with type 2 diabetes mellitus. Arch Med Res. 2009;40(1):18-23. https://doi.org/10.1016/j.arcmed.2008.10.003 [Pubmed]   
19. Eren E, Harman E, Arslanoglu S, Onal K. Effects of Type 2 Diabetes on Otoacoustic Emissions and the Medial Olivocochlear Reflex. Otolaryngol Head Neck Surg. 2014;150(6):1033-1039. https://doi.org/10.1177/0194599814527574 [Pubmed]   
20. Dallos P, Wang CY. Bioelectric correlates of kanamycin intoxication. Audiology. 1974;13(4):277-89. https://doi.org/10.3109/00206097409071685 [Pubmed]   
21. Harrison RV, Evans EF. Cochlear fibre responses in guinea pigs with well defined cochlear lesions. Scand Audiol Suppl. 1979;(9):83-92.
22. Ryan A, Dallos P. Effect of absence of cochlear outer hair cells on behavioural auditory threshold. Nature. 1975;253(5486):44-6. https://doi.org/10.1038/253044a0 [Pubmed]   
23. Liberman MC, Dodds LW. Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res. 1984;16(1):55-74. https://doi.org/10.1016/0378-5955(84)90025-X
24. Koide Y. Introductory studies on the chemical physiology of the labyrinth. Acta Med Biol. 1958;90:1-28.
25. Wing KG. Studies of basic cochlear physiology and the energy-metabolism of the cochlear response in the cat. Acta Otolaryngol Suppl. 1959;148:1-97.
26. Mendelsohn M, Roderique J. Cationic changes in endolymph during hypoglycemia. Laryngoscope. 1972;82(8):1533-40. https://doi.org/10.1288/00005537-197208000-00016 [Pubmed]   
27. King RH. The role of glycation in the pathogenesis of diabetic polyneuropathy. Mol Pathol. 2001;54(6):400-8.
28. Bobbin RP, Thompson MH. Effects of putative transmitters on afferent cochlear transmission. Ann Otol Rhinol Laryngol. 1978;87:185-90. https://doi.org/10.1177/000348947808700207
29. Mu-oz DJ, Thorne PR, Housley GD, Billett TE, Battersby JM. Extracellular adenosine 5'-triphosphate (ATP) in the endolymphatic compartment influences cochlear function. Hear Res. 1995;90(1-2):106-18.
30. Mu-oz DJ, Thorne PR, Housley GD. P2X receptor-mediated changes in cochlear potentials arising from exogenous adenosine 5'-triphosphate in endolymph. Hear Res. 1999;138(1-2):56-64.
31. Kujawa SG, Erostegui C, Fallon M, Crist J, Bobbin RP. Effects of adenosine 5'-triphosphate and related agonists on cochlear function. Hear Res. 1994;76(1-2):87-100.
32. Orts Alborch M, Morant Ventura A, García Callejo J, Pérez del Valle B, Lorente R, Marco Algarra J. The study of otoacoustic emissions in diabetes mellitus. Acta Otorrinolaringol Esp. 1998;49:25(1)-8.
33. Nageris B, Hadar T, Feinmesser M, Elidan J. Cochlear histopathologic analysis in diabetic rats. Am J Otol. 1998;19(1):63-5.

This Article Cited By the following articles

Auditory and Vestibular Functioning in Individuals with Type-2 Diabetes Mellitus: A Systematic Review
Int Arch Otorhinolaryngol 2021; (): .

1
 
How to Cite this Article
Pubmed Style

Rajesh Paluru, Yoganandareddy Indla, Ramaswamy Chellam, Rajani Santhakumari. Assessment of functional status of outer hair cells in Type 2 diabetes by using distortion product otoacoustic emissions. Natl J Physiol Pharm Pharmacol. 2016; 6(5): 412-415. doi:10.5455/njppp.2016.6.0411404052016


Web Style

Rajesh Paluru, Yoganandareddy Indla, Ramaswamy Chellam, Rajani Santhakumari. Assessment of functional status of outer hair cells in Type 2 diabetes by using distortion product otoacoustic emissions. https://www.njppp.com/?mno=226146 [Access: December 03, 2022]. doi:10.5455/njppp.2016.6.0411404052016


AMA (American Medical Association) Style

Rajesh Paluru, Yoganandareddy Indla, Ramaswamy Chellam, Rajani Santhakumari. Assessment of functional status of outer hair cells in Type 2 diabetes by using distortion product otoacoustic emissions. Natl J Physiol Pharm Pharmacol. 2016; 6(5): 412-415. doi:10.5455/njppp.2016.6.0411404052016



Vancouver/ICMJE Style

Rajesh Paluru, Yoganandareddy Indla, Ramaswamy Chellam, Rajani Santhakumari. Assessment of functional status of outer hair cells in Type 2 diabetes by using distortion product otoacoustic emissions. Natl J Physiol Pharm Pharmacol. (2016), [cited December 03, 2022]; 6(5): 412-415. doi:10.5455/njppp.2016.6.0411404052016



Harvard Style

Rajesh Paluru, Yoganandareddy Indla, Ramaswamy Chellam, Rajani Santhakumari (2016) Assessment of functional status of outer hair cells in Type 2 diabetes by using distortion product otoacoustic emissions. Natl J Physiol Pharm Pharmacol, 6 (5), 412-415. doi:10.5455/njppp.2016.6.0411404052016



Turabian Style

Rajesh Paluru, Yoganandareddy Indla, Ramaswamy Chellam, Rajani Santhakumari. 2016. Assessment of functional status of outer hair cells in Type 2 diabetes by using distortion product otoacoustic emissions. National Journal of Physiology, Pharmacy and Pharmacology, 6 (5), 412-415. doi:10.5455/njppp.2016.6.0411404052016



Chicago Style

Rajesh Paluru, Yoganandareddy Indla, Ramaswamy Chellam, Rajani Santhakumari. "Assessment of functional status of outer hair cells in Type 2 diabetes by using distortion product otoacoustic emissions." National Journal of Physiology, Pharmacy and Pharmacology 6 (2016), 412-415. doi:10.5455/njppp.2016.6.0411404052016



MLA (The Modern Language Association) Style

Rajesh Paluru, Yoganandareddy Indla, Ramaswamy Chellam, Rajani Santhakumari. "Assessment of functional status of outer hair cells in Type 2 diabetes by using distortion product otoacoustic emissions." National Journal of Physiology, Pharmacy and Pharmacology 6.5 (2016), 412-415. Print. doi:10.5455/njppp.2016.6.0411404052016



APA (American Psychological Association) Style

Rajesh Paluru, Yoganandareddy Indla, Ramaswamy Chellam, Rajani Santhakumari (2016) Assessment of functional status of outer hair cells in Type 2 diabetes by using distortion product otoacoustic emissions. National Journal of Physiology, Pharmacy and Pharmacology, 6 (5), 412-415. doi:10.5455/njppp.2016.6.0411404052016