E-ISSN 2231-3206 | ISSN 2320-4672
 

Original Research 


Effect of cognitive stress on isometric contraction task

Roopa B. Ankad, Anita Herur.

Abstract
Background: Many daily life activities require motor performance while simultaneously performing a cognitive task that increases levels of arousal.

Aims and Objectives: This study aimed to know the effect of a cognitive stressor (CS) on time to task failure (TTF).

Materials and Methods: Each subject underwent three sessions. The first session included an isometric fatiguing contraction (isometric contraction [IMC]) using handgrip dynamometer. In the second session, CS was given for 2 min. In third session (IMC + CS), CS was given simultaneously with IMC. Heart rate (HR), blood pressure (BP), rate pressure product (RPP), and visual analog scale scores for anxiety (AVAS) and stress (SVAS) were recorded at rest, during three sessions and after 5 min of rest after completing the protocol. These parameters were analyzed by Student’s t-test and Pearson correlation test.

Results: TTF was significantly more in males and was positively correlated with initial strength. HR, BP, RPP, AVAS, and SVAS scores increased significantly with no gender differences during all three sessions from their respective resting levels. Systolic BP, RPP, and HR were significantly more during IMC + CS versus IMC session.

Conclusion: Exposure to CS can increase fatigability for both genders when performing low-force fatiguing contractions.

Key words: Cognitive Stress; Time to Task Failure; Isometric Contraction; Rate Pressure Product, Visual Analog Scale


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Roopa B. Ankad
Articles by Anita Herur
on Google
on Google Scholar


REFERENCES
1. Enoka RM, Duchateau J. Muscle fatigue: What, why and how it influences muscle function. J Physiol. 2008;586(1):11-23. https://doi.org/10.1113/jphysiol.2007.139477 [Pubmed]    [PMC Free Fulltext]   
2. Hicks AL, Kent-Braun J, Ditor DS. Sex differences in human skeletal muscle fatigue. Exerc Sport Sci Rev. 2001;29:109-12. https://doi.org/10.1097/00003677-200107000-00004 [Pubmed]   
3. Rantanen T, Guralnik JM, Foley D, Masaki K, Leveille S, Curb JD, et al. Midlife hand grip strength as a predictor of old age disability. JAMA. 1999;281(6):558-60. https://doi.org/10.1001/jama.281.6.558 [Pubmed]   
4. Avin KG. Moderators of Fatigue: The Complexity of Interactions. PhD (Doctor of Philosophy) Thesis, University of Iowa; 2012. Available from: http://www.ir.uiowa.edu/ etd/2815. [Last accessed on 2016 March 02].
5. Neyroud D, Ruttimann J, Mannion AF, Millet GY, Maffiuletti NA, Kayser B, et al. Comparison of neuromuscular adjustments associated with sustained isometric contractions of four different muscle groups. J Appl Physiol. 2013;114(10):1426-34. https://doi.org/10.1152/japplphysiol.01539.2012 [Pubmed]   
6. Yoon T, Keller ML, De-Lap BS, Harkins A, Lepers R, Hunter SK. Sex differences in response to cognitive stress during a fatiguing contraction. J Appl Physiol. 2009;107(5):1486-96. https://doi.org/10.1152/japplphysiol.00238.2009 [Pubmed]    [PMC Free Fulltext]   
7. Hunter SK. Sex differences and mechanisms of task-specific muscle fatigue. Exerc Sport Sci Rev. 2009;37(3):113-22. https://doi.org/10.1097/JES.0b013e3181aa63e2 [Pubmed]    [PMC Free Fulltext]   
8. Kajantie E, Phillips DI. The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology. 2006;31(2):151-78. https://doi.org/10.1016/j.psyneuen.2005.07.002 [Pubmed]   
9. Keller-Ross ML, Pereira HM, Pruse J, Yoon T, SchlinderDelap B, Nielson KA, et al. Stressor-induced increase in muscle fatigability of young men and women is predicted by strength but not voluntary activation. J Appl Physiol. 2014;116(7):767-78. https://doi.org/10.1152/japplphysiol.01129.2013 [Pubmed]    [PMC Free Fulltext]   
10. Anjana Y, Reetu K. Effect of gender difference in response to sustained isometric exercise using handgrip dynamometer. J Evol Med Dent Sci. 2014;3(22):6043-7. https://doi.org/10.14260/jemds/2014/2702
11. Das A, Dutta M. Correlation between body mass index and handgrip strength and handgrip endurance among young healthy adults. J Evid Based Med Healthc. 2015;2(27):3995-4001. https://doi.org/10.18410/jebmh/2015/568
12. Shetty CS, Parkanandy SG, Nagaraja S. Influence of various anthropometric parameters on handgrip strength and handgrip endurance in young males and females. Int J Biol Med Res. 2012;3(3):2153-2157.
13. Ravisankar P, Madanmohan, Udupa K, Prakash ES. Correlation between body mass index and blood pressure indices, handgrip strength and handgrip endurance in underweight, normal weight and overweight adolescents. Indian J Physiol Pharmacol. 2005;49(4):455-61.
14. Spielberger CD, Lushene RE. State-Trait Anxiety Inventory Manual. Palo Alto, CA: Consulting Psychologists; 1970.
15. Noteboom JT, Fleshner M, Enoka RM. Activation of the arousal response can impair performance on a simple motor task. J Appl Physiol. 2001;91(2):821-31.
16. Gaskell WH. The changes of the blood-stream in muscles through stimulation of their nerves. J Anat Physiol. 1877;11:360-402.3.
17. Joyner MJ, Halliwill JR. Sympathetic vasodilatation in human limbs. J Physiol. 2000;526:471-80.
18. Humphreys PW, Lind AR. The blood flow through active and inactive muscles of the forearm during sustained hand-grip contractions. J Physiol. 1963;166:120-35. https://doi.org/10.1113/jphysiol.1963.sp007094
19. Lind AR, McNicol GW. Local and central circulatory responses to sustained contractions and the effect of free or restricted arterial inflow on post-exercise hyperaemia. J Physiol. 1967;192(3):575-93. https://doi.org/10.1113/jphysiol.1967.sp008318
20. Saltin B, RÃ¥degran G, Koskolou MD, Roach RC. Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol Scand. 1998;162(3):421-36. https://doi.org/10.1046/j.1365-201X.1998.0293e.x [Pubmed]   
21. Râdegran G. Ultrasound Doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans. J Appl Physiol. 1997;83(4):1383-8.
22. Thompson BC, Fadia T, Pincivero DM, Scheuermann BW. Forearm blood flow responses to fatiguing isometric contractions in women and men. Am J Physiol Heart Circ Physiol. 2007;293(1):H805-12.
23. Feldman PJ, Cohen S, Lepore SJ, Matthews KA, Kamarck TW, Marsland AL. Negative emotions and acute physiological responses to stress. Ann Behav Med. 1999;21(3):216-22. https://doi.org/10.1007/BF02884836 [Pubmed]   
24. Bell EC, Willson MC, Wilman AH, Dave S, Silverstone PH. Males and females differ in brain activation during cognitive tasks. Neuroimage. 2006;30(2):529-38. https://doi.org/10.1016/j.neuroimage.2005.09.049 [Pubmed]   
25. Wang J, Korczykowski M, Rao H, Fan Y, Pluta J, Gur RC, et al. Gender difference in neural response to psychological stress. Soc Cogn Affect Neurosci. 2007;2(3):227-39. https://doi.org/10.1093/scan/nsm018 [Pubmed]    [PMC Free Fulltext]   
26. Wong SW, Kimmerly DS, Massé N, Menon RS, Cechetto DF, Shoemaker JK. Sex differences in forebrain and cardiovagal responses at the onset of isometric handgrip exercise: A retrospective fMRI study. J Appl Physiol. 2007;103(4):1402-11. https://doi.org/10.1152/japplphysiol.00171.2007 [Pubmed]   
27. Wasmund WL, Westerholm EC, Watenpaugh DE, Wasmund SL, Smith ML. Interactive effects of mental and physical stress on cardiovascular control. J Appl Physiol. 2002;92(5):1828-34. https://doi.org/10.1152/japplphysiol.00019.2001 [Pubmed]   
28. Thimmaraju L, Soumya BA. Gender differences in cardiovascular response to upper limb isometric exercises. Int J Res Health Sci. 2014;2:454-61.
29. Gobel FL, Norstrom LA, Nelson RR, Jorgensen CR, Wang Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation. 1978;57(3):549-56. https://doi.org/10.1161/01.CIR.57.3.549 [Pubmed]   

How to Cite this Article
Pubmed Style

Roopa B. Ankad, Anita Herur. Effect of cognitive stress on isometric contraction task. Natl J Physiol Pharm Pharmacol. 2016; 6(5): 381-387. doi:10.5455/njppp.2016.6.20160409528042016


Web Style

Roopa B. Ankad, Anita Herur. Effect of cognitive stress on isometric contraction task. https://www.njppp.com/?mno=225135 [Access: December 01, 2022]. doi:10.5455/njppp.2016.6.20160409528042016


AMA (American Medical Association) Style

Roopa B. Ankad, Anita Herur. Effect of cognitive stress on isometric contraction task. Natl J Physiol Pharm Pharmacol. 2016; 6(5): 381-387. doi:10.5455/njppp.2016.6.20160409528042016



Vancouver/ICMJE Style

Roopa B. Ankad, Anita Herur. Effect of cognitive stress on isometric contraction task. Natl J Physiol Pharm Pharmacol. (2016), [cited December 01, 2022]; 6(5): 381-387. doi:10.5455/njppp.2016.6.20160409528042016



Harvard Style

Roopa B. Ankad, Anita Herur (2016) Effect of cognitive stress on isometric contraction task. Natl J Physiol Pharm Pharmacol, 6 (5), 381-387. doi:10.5455/njppp.2016.6.20160409528042016



Turabian Style

Roopa B. Ankad, Anita Herur. 2016. Effect of cognitive stress on isometric contraction task. National Journal of Physiology, Pharmacy and Pharmacology, 6 (5), 381-387. doi:10.5455/njppp.2016.6.20160409528042016



Chicago Style

Roopa B. Ankad, Anita Herur. "Effect of cognitive stress on isometric contraction task." National Journal of Physiology, Pharmacy and Pharmacology 6 (2016), 381-387. doi:10.5455/njppp.2016.6.20160409528042016



MLA (The Modern Language Association) Style

Roopa B. Ankad, Anita Herur. "Effect of cognitive stress on isometric contraction task." National Journal of Physiology, Pharmacy and Pharmacology 6.5 (2016), 381-387. Print. doi:10.5455/njppp.2016.6.20160409528042016



APA (American Psychological Association) Style

Roopa B. Ankad, Anita Herur (2016) Effect of cognitive stress on isometric contraction task. National Journal of Physiology, Pharmacy and Pharmacology, 6 (5), 381-387. doi:10.5455/njppp.2016.6.20160409528042016